August 5, 2024
European Art

Determinants of exposure to acrylamide in European children and adults based on urinary biomarkers: results from the “European Human Biomonitoring Initiative” HBM4EU participating studies


  • IARC. List of Classifications—IARC Monographs on the Identification of Carcinogenic Hazards to Humans (accessed 19 May 2022); https://monographs.iarc.who.int/list-of-classifications

  • ECHA. Acrylamide: Brief Profile (accessed 19 May 2022); https://echa.europa.eu/sv/brief-profile/-/briefprofile/100.001.067

  • EFSA. Scientific opinion on acrylamide in food. EFSA J. 13(6), 4104. https://doi.org/10.2903/j.efsa.2015.4104 (2015).

    Article 
    CAS 

    Google Scholar
     

  • ATSDR. Toxicological Profile for Acrylamide (2012).

  • Liang, J. et al. Total cholesterol: A potential mediator of the association between exposure to acrylamide and hypertension risk in adolescent females. Environ. Sci. Pollut. Res. 29(25), 38425–38434. https://doi.org/10.1007/s11356-021-18342-0 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hsu, C. N. et al. Association between acrylamide metabolites and cardiovascular risk in children with early stages of chronic kidney disease. Int. J. Mol. Sci. 21(16), 1–12. https://doi.org/10.3390/ijms21165855 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z., Sun, J. & Zhang, D. Association between acrylamide hemoglobin adduct levels and depressive symptoms in US adults: NHANES 2013–2016. J. Agric. Food Chem. 69(46), 13762–13771. https://doi.org/10.1021/acs.jafc.1c04647 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quan, W. et al. Effect of dietary exposure to acrylamide on diabetes-associated cognitive dysfunction from the perspectives of oxidative damage, neuroinflammation, and metabolic disorders. J. Agric. Food Chem. 70(14), 4445–4456. https://doi.org/10.1021/acs.jafc.2c00662 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filippini, T. et al. Dietary acrylamide exposure and risk of site-specific cancer: A systematic review and dose-response meta-analysis of epidemiological studies. Front. Nutr. 9, 875607. https://doi.org/10.3389/fnut.2022.875607 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • EFSA, Benford, D., Bignami, M., Chipman, J. K. & Ramos Bordajandi, L. Assessment of the genotoxicity of acrylamide. EFSA J. 20 (5), e07293 (2022). https://doi.org/10.2903/j.efsa.2022.7293.

  • European Commission. Commission regulation (EU) 2017/2158 of 20 November 2017: Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. Eur. Union, L304/24–L304/44 (2017).

  • European Commission, Commission Recommendation (EU) 2019/1888 of 7 November 2019 on the monitoring of the presence of acrylamide in certain foods. Off. J. Eur. Union L290/31–L290/33 (2019).

  • Burdorf, A. Identification of determinants of exposure: Consequences for measurement and control strategies. Occup. Environ. Med. 62(5), 344–350. https://doi.org/10.1136/oem.2004.015198 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albiach-Delgado, A., Esteve-Turrillas, F. A., Fernández, S. F., Garlito, B. & Pardo, O. Review of the state of the art of acrylamide human biomonitoring. Chemosphere 295, 133880. https://doi.org/10.1016/j.chemosphere.2022.133880 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mojska, H., Gielecińska, I., Winiarek, J. & Sawicki, W. Acrylamide content in breast milk: The evaluation of the impact of breastfeeding women’s diet and the estimation of the exposure of breastfed infants to acrylamide in breast milk. Toxics 9(11), 298. https://doi.org/10.3390/toxics9110298 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández, S. F., Pardo, O., Coscollà, C. & Yusà, V. Risk assessment of the exposure of Spanish children to acrylamide using human biomonitoring. Environ. Pollut. 305, 119319. https://doi.org/10.1016/j.envpol.2022.119319 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwedler, G. et al. Benzene metabolite SPMA and acrylamide metabolites AAMA and GAMA in urine of children and adolescents in Germany: Human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Environ. Res. 192, 110295. https://doi.org/10.1016/j.envres.2020.110295 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • WHO. Human Biomonitoring: Facts and Figures (2015); http://www.euro.who.int/__data/assets/pdf_file/0020/276311/Human-biomonitoring-facts-figures-en.pdf

  • WHO Regional Office for Europe. Human Biomonitoring: Assessment of Exposure to Chemicals and Their Health Risks: Summary for Decision Makers (Accessed 20 November 2023); https://www.who.int/europe/publications/i/item/WHO-EURO-2023-7574-47341-69480

  • Törnqvist, M. et al. Protein adducts: Quantitative and qualitative aspects of their formation, analysis and applications. J. Chromatogr B 778(1), 279–308. https://doi.org/10.1016/S1570-0232(02)00172-1 (2002).

    Article 

    Google Scholar
     

  • Sörgel, F. et al. Acrylamide: Increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy 48(6), 267–274. https://doi.org/10.1159/000069715 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilles, L. et al. HBM4EU combines and harmonises human biomonitoring data across the EU, building on existing capacity: The HBM4EU survey. Int. J. Hyg. Environ. Health 237, 113809. https://doi.org/10.1016/j.ijheh.2021.113809 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilles, L. et al. Harmonization of human biomonitoring studies in Europe: Characteristics of the HBM4EU-aligned studies participants. Int. J. Environ. Res. Public Health 19, 6787 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteban-López, M. et al. The European human biomonitoring platform: Design and implementation of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals. Int. J. Hyg. Environ. Health 234, 113740. https://doi.org/10.1016/j.ijheh.2021.113740 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Govarts, E. et al. Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021). Int. J. Hyg. Environ. Health 249, 114119. https://doi.org/10.1016/j.ijheh.2023.114119 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández, S. F., Pardo, O., Coscollà, C. & Yusà, V. Exposure assessment of Spanish lactating mothers to acrylamide via human biomonitoring. Environ. Res. 203, 111832. https://doi.org/10.1016/j.envres.2021.111832 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mojska, H., Gielecińska, I. & Cendrowski, A. Acrylamide content in cigarette mainstream smoke and estimation of exposure to acrylamide from tobacco smoke in Poland. Ann. Agric. Environ. Med. 23(3), 456–461. https://doi.org/10.5604/12321966.1219187 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vesper, H. W. et al. Cross-sectional study on acrylamide hemoglobin adducts in subpopulations from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. J. Agric. Food Chem. 56(15), 6046–6053. https://doi.org/10.1021/jf703750t (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timmermann, C. A. G. et al. A review of dietary intake of acrylamide in humans. Toxics 9(7), 1–24. https://doi.org/10.3390/toxics9070155 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, D., Wang, P., Liu, Y., Hu, X. & Chen, F. Metabolism of acrylamide: Interindividual and interspecies differences as well as the application as biomarkers. Curr. Drug Metab. 17(4), 317–326. https://doi.org/10.2174/1389200216666151015115007 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Y. F. et al. The modifying effect of CYP2E1, GST, and mEH genotypes on the formation of hemoglobin adducts of acrylamide and glycidamide in workers exposed to acrylamide. Toxicol. Lett. 215(2), 92–99. https://doi.org/10.1016/j.toxlet.2012.10.003 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poteser, M. et al. Time trends of acrylamide exposure in Europe: Combined analysis of published reports and current HBM4EU studies. Toxics 10(8), 481. https://doi.org/10.3390/TOXICS10080481 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miranda-Filho, A. et al. Epidemiological patterns of leukaemia in 184 countries: A population-based study. Lancet Haematol. 5(1), e14–e24. https://doi.org/10.1016/S2352-3026(17)30232-6 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hartmann, E. C. et al. Hemoglobin adducts and mercapturic acid excretion of acrylamide and glycidamide in one study population. J. Agric. Food Chem. 56(15), 6061–6068. https://doi.org/10.1021/jf800277h (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brisson, B. et al. Relation between dietary acrylamide exposure and biomarkers of internal dose in Canadian teenagers. J. Expo. Sci. Environ. Epidemiol. 24(2), 215–221. https://doi.org/10.1038/jes.2013.34 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, S. Y., Ko, A., Kang, H. S., Hwang, M. S. & Lee, H. S. Association of urinary acrylamide concentration with lifestyle and demographic factors in a population of South Korean children and adolescents. Environ. Sci. Pollut. Res. 26(18), 18247–18255. https://doi.org/10.1007/s11356-019-05037-w (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, C., Lee, H., Chen, Y., Lien, G. & Lin, L. Positive association between urinary levels of 8-hydroxydeoxyguanosine and the acrylamide metabolite N-acetyl-S-(propionamide)-cysteine in adolescents and young adults. J. Hazard Mater. 261, 372–377. https://doi.org/10.1016/j.jhazmat.2013.06.069 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poteser, M. et al. Trends of exposure to acrylamide as measured by urinary biomarkers levels within the HBM4EU biomonitoring aligned studies (2000–2021). Toxics 10, 443. https://doi.org/10.3390/toxics10080443 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjellaas, T. et al. Urinary acrylamide metabolites as biomarkers for short-term dietary exposure to acrylamide. Food Chem. Toxicol. 45(6), 1020–1026. https://doi.org/10.1016/j.fct.2006.12.007 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kocadağli, T. & Gökmen, V. Metabolism of Acrylamide in Humans and Biomarkers of Exposure to Acrylamide (Elsevier, Amsterdam, 2016). https://doi.org/10.1016/B978-0-12-802832-2.00006-1.

    Book 

    Google Scholar
     

  • WHO. Environment and Health Risks: A Review of the Influence and Effects of Social Inequalities (2010).

  • Lee, J. H., Lee, K. J., Ahn, R. & Kang, H. S. Urinary concentrations of acrylamide (AA) and N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) and associations with demographic factors in the South Korean population. Int. J. Hyg. Environ. Health 217(7), 751–757. https://doi.org/10.1016/j.ijheh.2014.03.005 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yeager, R. et al. Association between residential greenness and exposure to volatile organic compounds. Sci. Total Environ. 707, 135435. https://doi.org/10.1016/j.scitotenv.2019.135435 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilar-Compte, M. et al. Urban poverty and nutrition challenges associated with accessibility to a healthy diet: A global systematic literature review. Int. J. Equity Health 20, 1–19. https://doi.org/10.1186/s12939-020-01330-0 (2021).

    Article 

    Google Scholar
     

  • Morton, L. W., Bitto, E. A., Oakland, M. J. & Sand, M. Accessing food resources: Rural and urban patterns of giving and getting food. Agric. Hum. Values 25(1), 107–119. https://doi.org/10.1007/s10460-007-9095-8 (2008).

    Article 

    Google Scholar
     

  • Lee, J., Lee, K. & Kang, H. Estimation of the daily human intake of acrylamide (AA) based on urinary N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) and the contribution of dietary habits in South Korean adults. J. Environ. Health Sci. 42, 235–245 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ji, K. et al. Science of the total environment urinary levels of N-acetyl-S-(2-carbamoylethyl)-cysteine(AAMA), an acrylamide metabolite, in Korean children and their association with food consumption. Sci. Total Environ 456–457, 17–23. https://doi.org/10.1016/j.scitotenv.2013.03.057 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Toxicokinetics and internal exposure of acrylamide: New insight into comprehensively profiling mercapturic acid metabolites as short-term biomarkers in rats and Chinese adolescents. Arch. Toxicol. 91(5), 2107–2118. https://doi.org/10.1007/s00204-016-1869-6 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C. C. J., Li, C. M., Wu, C. F., Jao, S. P. & Wu, K. Y. Analysis of urinary N-acetyl-S-(propionamide)-cysteine as a biomarker for the assessment of acrylamide exposure in smokers. Environ. Res. 104(3), 346–351. https://doi.org/10.1016/j.envres.2007.03.005 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotemori, A. et al. Validity of a self-administered food frequency questionnaire for the estimation of acrylamide intake in the Japanese population: The JPHC FFQ validation study. J. Epidemiol. 28(12), 482–487. https://doi.org/10.2188/JEA.JE20170186 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The WHO expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403), 157–163. https://doi.org/10.1016/S0140-6736(03)15268-3 (2004).

    Article 

    Google Scholar
     

  • Hays, S. M., Aylward, L. L. & Blount, B. C. Variation in urinary flow rates according to demographic characteristics and body mass index in NHANES: Potential confounding of associations between health outcomes and urinary biomarker concentrations. Environ. Health Perspect. 123(4), 293–300. https://doi.org/10.1289/ehp.1408944 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, P. L., Lin, L. Y., Chen, P. C., Su, T. C. & Lin, C. Y. Negative association between acrylamide exposure and body composition in adults: NHANES, 2003–2004. Nutr. Diabetes 7(3), e246. https://doi.org/10.1038/nutd.2016.48 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marseglia, L. et al. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 16(1), 378–400. https://doi.org/10.3390/ijms16010378 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lucas, D. et al. Cytochrome P450 2E1 activity in diabetic and obese patients as assessed by chlorzoxazone hydroxylation. Fundam. Clin. Pharmacol. 12(5), 553–558. https://doi.org/10.1111/J.1472-8206.1998.TB00985.X (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heudorf, U., Hartmann, E. & Angerer, J. Acrylamide in children: Exposure assessment via urinary acrylamide metabolites as biomarkers. Int. J. Hyg. Environ. Health 212(2), 135–141. https://doi.org/10.1016/j.ijheh.2008.04.006 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goerke, K. et al. Biomonitoring of nutritional acrylamide intake by consumers without dietary preferences as compared to vegans. Arch. Toxicol. 93(4), 987–996. https://doi.org/10.1007/s00204-019-02412-x (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Vleet, T. R., Bombick, D. W. & Coulombe, R. A. Inhibition of human cytochrome P450 2E1 by nicotine, cotinine, and aqueous cigarette tar extract in vitro. Toxicol. Sci. 64(2), 185–191. https://doi.org/10.1093/TOXSCI/64.2.185 (2001).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *