IARC. List of Classifications—IARC Monographs on the Identification of Carcinogenic Hazards to Humans (accessed 19 May 2022); https://monographs.iarc.who.int/list-of-classifications
ECHA. Acrylamide: Brief Profile (accessed 19 May 2022); https://echa.europa.eu/sv/brief-profile/-/briefprofile/100.001.067
EFSA. Scientific opinion on acrylamide in food. EFSA J. 13(6), 4104. https://doi.org/10.2903/j.efsa.2015.4104 (2015).
ATSDR. Toxicological Profile for Acrylamide (2012).
Liang, J. et al. Total cholesterol: A potential mediator of the association between exposure to acrylamide and hypertension risk in adolescent females. Environ. Sci. Pollut. Res. 29(25), 38425–38434. https://doi.org/10.1007/s11356-021-18342-0 (2022).
Hsu, C. N. et al. Association between acrylamide metabolites and cardiovascular risk in children with early stages of chronic kidney disease. Int. J. Mol. Sci. 21(16), 1–12. https://doi.org/10.3390/ijms21165855 (2020).
Li, Z., Sun, J. & Zhang, D. Association between acrylamide hemoglobin adduct levels and depressive symptoms in US adults: NHANES 2013–2016. J. Agric. Food Chem. 69(46), 13762–13771. https://doi.org/10.1021/acs.jafc.1c04647 (2021).
Quan, W. et al. Effect of dietary exposure to acrylamide on diabetes-associated cognitive dysfunction from the perspectives of oxidative damage, neuroinflammation, and metabolic disorders. J. Agric. Food Chem. 70(14), 4445–4456. https://doi.org/10.1021/acs.jafc.2c00662 (2022).
Filippini, T. et al. Dietary acrylamide exposure and risk of site-specific cancer: A systematic review and dose-response meta-analysis of epidemiological studies. Front. Nutr. 9, 875607. https://doi.org/10.3389/fnut.2022.875607 (2022).
EFSA, Benford, D., Bignami, M., Chipman, J. K. & Ramos Bordajandi, L. Assessment of the genotoxicity of acrylamide. EFSA J. 20 (5), e07293 (2022). https://doi.org/10.2903/j.efsa.2022.7293.
European Commission. Commission regulation (EU) 2017/2158 of 20 November 2017: Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. Eur. Union, L304/24–L304/44 (2017).
European Commission, Commission Recommendation (EU) 2019/1888 of 7 November 2019 on the monitoring of the presence of acrylamide in certain foods. Off. J. Eur. Union L290/31–L290/33 (2019).
Burdorf, A. Identification of determinants of exposure: Consequences for measurement and control strategies. Occup. Environ. Med. 62(5), 344–350. https://doi.org/10.1136/oem.2004.015198 (2005).
Albiach-Delgado, A., Esteve-Turrillas, F. A., Fernández, S. F., Garlito, B. & Pardo, O. Review of the state of the art of acrylamide human biomonitoring. Chemosphere 295, 133880. https://doi.org/10.1016/j.chemosphere.2022.133880 (2022).
Mojska, H., Gielecińska, I., Winiarek, J. & Sawicki, W. Acrylamide content in breast milk: The evaluation of the impact of breastfeeding women’s diet and the estimation of the exposure of breastfed infants to acrylamide in breast milk. Toxics 9(11), 298. https://doi.org/10.3390/toxics9110298 (2021).
Fernández, S. F., Pardo, O., Coscollà, C. & Yusà, V. Risk assessment of the exposure of Spanish children to acrylamide using human biomonitoring. Environ. Pollut. 305, 119319. https://doi.org/10.1016/j.envpol.2022.119319 (2022).
Schwedler, G. et al. Benzene metabolite SPMA and acrylamide metabolites AAMA and GAMA in urine of children and adolescents in Germany: Human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Environ. Res. 192, 110295. https://doi.org/10.1016/j.envres.2020.110295 (2021).
WHO. Human Biomonitoring: Facts and Figures (2015); http://www.euro.who.int/__data/assets/pdf_file/0020/276311/Human-biomonitoring-facts-figures-en.pdf
WHO Regional Office for Europe. Human Biomonitoring: Assessment of Exposure to Chemicals and Their Health Risks: Summary for Decision Makers (Accessed 20 November 2023); https://www.who.int/europe/publications/i/item/WHO-EURO-2023-7574-47341-69480
Törnqvist, M. et al. Protein adducts: Quantitative and qualitative aspects of their formation, analysis and applications. J. Chromatogr B 778(1), 279–308. https://doi.org/10.1016/S1570-0232(02)00172-1 (2002).
Sörgel, F. et al. Acrylamide: Increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy 48(6), 267–274. https://doi.org/10.1159/000069715 (2002).
Gilles, L. et al. HBM4EU combines and harmonises human biomonitoring data across the EU, building on existing capacity: The HBM4EU survey. Int. J. Hyg. Environ. Health 237, 113809. https://doi.org/10.1016/j.ijheh.2021.113809 (2021).
Gilles, L. et al. Harmonization of human biomonitoring studies in Europe: Characteristics of the HBM4EU-aligned studies participants. Int. J. Environ. Res. Public Health 19, 6787 (2022).
Esteban-López, M. et al. The European human biomonitoring platform: Design and implementation of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals. Int. J. Hyg. Environ. Health 234, 113740. https://doi.org/10.1016/j.ijheh.2021.113740 (2021).
Govarts, E. et al. Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021). Int. J. Hyg. Environ. Health 249, 114119. https://doi.org/10.1016/j.ijheh.2023.114119 (2023).
Fernández, S. F., Pardo, O., Coscollà, C. & Yusà, V. Exposure assessment of Spanish lactating mothers to acrylamide via human biomonitoring. Environ. Res. 203, 111832. https://doi.org/10.1016/j.envres.2021.111832 (2021).
Mojska, H., Gielecińska, I. & Cendrowski, A. Acrylamide content in cigarette mainstream smoke and estimation of exposure to acrylamide from tobacco smoke in Poland. Ann. Agric. Environ. Med. 23(3), 456–461. https://doi.org/10.5604/12321966.1219187 (2016).
Vesper, H. W. et al. Cross-sectional study on acrylamide hemoglobin adducts in subpopulations from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. J. Agric. Food Chem. 56(15), 6046–6053. https://doi.org/10.1021/jf703750t (2008).
Timmermann, C. A. G. et al. A review of dietary intake of acrylamide in humans. Toxics 9(7), 1–24. https://doi.org/10.3390/toxics9070155 (2021).
Li, D., Wang, P., Liu, Y., Hu, X. & Chen, F. Metabolism of acrylamide: Interindividual and interspecies differences as well as the application as biomarkers. Curr. Drug Metab. 17(4), 317–326. https://doi.org/10.2174/1389200216666151015115007 (2016).
Huang, Y. F. et al. The modifying effect of CYP2E1, GST, and mEH genotypes on the formation of hemoglobin adducts of acrylamide and glycidamide in workers exposed to acrylamide. Toxicol. Lett. 215(2), 92–99. https://doi.org/10.1016/j.toxlet.2012.10.003 (2012).
Poteser, M. et al. Time trends of acrylamide exposure in Europe: Combined analysis of published reports and current HBM4EU studies. Toxics 10(8), 481. https://doi.org/10.3390/TOXICS10080481 (2022).
Miranda-Filho, A. et al. Epidemiological patterns of leukaemia in 184 countries: A population-based study. Lancet Haematol. 5(1), e14–e24. https://doi.org/10.1016/S2352-3026(17)30232-6 (2018).
Hartmann, E. C. et al. Hemoglobin adducts and mercapturic acid excretion of acrylamide and glycidamide in one study population. J. Agric. Food Chem. 56(15), 6061–6068. https://doi.org/10.1021/jf800277h (2008).
Brisson, B. et al. Relation between dietary acrylamide exposure and biomarkers of internal dose in Canadian teenagers. J. Expo. Sci. Environ. Epidemiol. 24(2), 215–221. https://doi.org/10.1038/jes.2013.34 (2014).
Choi, S. Y., Ko, A., Kang, H. S., Hwang, M. S. & Lee, H. S. Association of urinary acrylamide concentration with lifestyle and demographic factors in a population of South Korean children and adolescents. Environ. Sci. Pollut. Res. 26(18), 18247–18255. https://doi.org/10.1007/s11356-019-05037-w (2019).
Lin, C., Lee, H., Chen, Y., Lien, G. & Lin, L. Positive association between urinary levels of 8-hydroxydeoxyguanosine and the acrylamide metabolite N-acetyl-S-(propionamide)-cysteine in adolescents and young adults. J. Hazard Mater. 261, 372–377. https://doi.org/10.1016/j.jhazmat.2013.06.069 (2013).
Poteser, M. et al. Trends of exposure to acrylamide as measured by urinary biomarkers levels within the HBM4EU biomonitoring aligned studies (2000–2021). Toxics 10, 443. https://doi.org/10.3390/toxics10080443 (2022).
Bjellaas, T. et al. Urinary acrylamide metabolites as biomarkers for short-term dietary exposure to acrylamide. Food Chem. Toxicol. 45(6), 1020–1026. https://doi.org/10.1016/j.fct.2006.12.007 (2007).
Kocadağli, T. & Gökmen, V. Metabolism of Acrylamide in Humans and Biomarkers of Exposure to Acrylamide (Elsevier, Amsterdam, 2016). https://doi.org/10.1016/B978-0-12-802832-2.00006-1.
WHO. Environment and Health Risks: A Review of the Influence and Effects of Social Inequalities (2010).
Lee, J. H., Lee, K. J., Ahn, R. & Kang, H. S. Urinary concentrations of acrylamide (AA) and N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) and associations with demographic factors in the South Korean population. Int. J. Hyg. Environ. Health 217(7), 751–757. https://doi.org/10.1016/j.ijheh.2014.03.005 (2013).
Yeager, R. et al. Association between residential greenness and exposure to volatile organic compounds. Sci. Total Environ. 707, 135435. https://doi.org/10.1016/j.scitotenv.2019.135435 (2020).
Vilar-Compte, M. et al. Urban poverty and nutrition challenges associated with accessibility to a healthy diet: A global systematic literature review. Int. J. Equity Health 20, 1–19. https://doi.org/10.1186/s12939-020-01330-0 (2021).
Morton, L. W., Bitto, E. A., Oakland, M. J. & Sand, M. Accessing food resources: Rural and urban patterns of giving and getting food. Agric. Hum. Values 25(1), 107–119. https://doi.org/10.1007/s10460-007-9095-8 (2008).
Lee, J., Lee, K. & Kang, H. Estimation of the daily human intake of acrylamide (AA) based on urinary N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) and the contribution of dietary habits in South Korean adults. J. Environ. Health Sci. 42, 235–245 (2016).
Ji, K. et al. Science of the total environment urinary levels of N-acetyl-S-(2-carbamoylethyl)-cysteine(AAMA), an acrylamide metabolite, in Korean children and their association with food consumption. Sci. Total Environ 456–457, 17–23. https://doi.org/10.1016/j.scitotenv.2013.03.057 (2013).
Wang, Q. et al. Toxicokinetics and internal exposure of acrylamide: New insight into comprehensively profiling mercapturic acid metabolites as short-term biomarkers in rats and Chinese adolescents. Arch. Toxicol. 91(5), 2107–2118. https://doi.org/10.1007/s00204-016-1869-6 (2017).
Huang, C. C. J., Li, C. M., Wu, C. F., Jao, S. P. & Wu, K. Y. Analysis of urinary N-acetyl-S-(propionamide)-cysteine as a biomarker for the assessment of acrylamide exposure in smokers. Environ. Res. 104(3), 346–351. https://doi.org/10.1016/j.envres.2007.03.005 (2007).
Kotemori, A. et al. Validity of a self-administered food frequency questionnaire for the estimation of acrylamide intake in the Japanese population: The JPHC FFQ validation study. J. Epidemiol. 28(12), 482–487. https://doi.org/10.2188/JEA.JE20170186 (2018).
The WHO expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403), 157–163. https://doi.org/10.1016/S0140-6736(03)15268-3 (2004).
Hays, S. M., Aylward, L. L. & Blount, B. C. Variation in urinary flow rates according to demographic characteristics and body mass index in NHANES: Potential confounding of associations between health outcomes and urinary biomarker concentrations. Environ. Health Perspect. 123(4), 293–300. https://doi.org/10.1289/ehp.1408944 (2015).
Chu, P. L., Lin, L. Y., Chen, P. C., Su, T. C. & Lin, C. Y. Negative association between acrylamide exposure and body composition in adults: NHANES, 2003–2004. Nutr. Diabetes 7(3), e246. https://doi.org/10.1038/nutd.2016.48 (2017).
Marseglia, L. et al. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 16(1), 378–400. https://doi.org/10.3390/ijms16010378 (2015).
Lucas, D. et al. Cytochrome P450 2E1 activity in diabetic and obese patients as assessed by chlorzoxazone hydroxylation. Fundam. Clin. Pharmacol. 12(5), 553–558. https://doi.org/10.1111/J.1472-8206.1998.TB00985.X (1998).
Heudorf, U., Hartmann, E. & Angerer, J. Acrylamide in children: Exposure assessment via urinary acrylamide metabolites as biomarkers. Int. J. Hyg. Environ. Health 212(2), 135–141. https://doi.org/10.1016/j.ijheh.2008.04.006 (2009).
Goerke, K. et al. Biomonitoring of nutritional acrylamide intake by consumers without dietary preferences as compared to vegans. Arch. Toxicol. 93(4), 987–996. https://doi.org/10.1007/s00204-019-02412-x (2019).
Van Vleet, T. R., Bombick, D. W. & Coulombe, R. A. Inhibition of human cytochrome P450 2E1 by nicotine, cotinine, and aqueous cigarette tar extract in vitro. Toxicol. Sci. 64(2), 185–191. https://doi.org/10.1093/TOXSCI/64.2.185 (2001).