August 5, 2024
European Art

Novel light regimes in European forests


  • Lowman, M. D. & Wittman, P. K. Forest canopies: methods, hypotheses, and future directions. Annu. Rev. Ecol. Syst. 27, 55–81 (1996).

    Article 

    Google Scholar
     

  • Gilliam, F. (ed.) The Herbaceous Layer in Forests of Eastern North America (Oxford Univ. Press, 2014).

  • De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Senior, R. A., Hill, J. K., Benedick, S. & Edwards, D. P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Change Biol. 24, 1267–1278 (2018).

    Article 

    Google Scholar
     

  • Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verheyen, K. et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J. Ecol. 100, 352–365 (2012).

    Article 

    Google Scholar
     

  • Boyle, M. J. W. et al. Localised climate change defines ant communities in human-modified tropical landscapes. Funct. Ecol. 35, 1094–1108 (2021).

    Article 
    CAS 

    Google Scholar
     

  • De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).

    Article 

    Google Scholar
     

  • De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Senf, C. & Seidl, R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18, 5223–5230 (2021).

    Article 

    Google Scholar
     

  • Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • State of Europe’s Forests 2020, https://foresteurope.org/state-europes-forests-2020/ (Forest Europe, 2020).

  • Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).

    Article 

    Google Scholar
     

  • Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patacca, M. et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Change Biol. 29, 1359–1376 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    Article 

    Google Scholar
     

  • Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196 (2021).

    Article 

    Google Scholar
     

  • Vicente-Serrano, S. M. et al. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).

    Article 

    Google Scholar
     

  • Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagel, T. A. et al. The natural disturbance regime in forests of the Dinaric Mountains: a synthesis of evidence. For. Ecol. Manage. 388, 29–42 (2017).

    Article 

    Google Scholar
     

  • Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Change Biol. 24, 4304–4315 (2018).

    Article 

    Google Scholar
     

  • Pollastrini, M., Puletti, N., Selvi, F., Iacopetti, G. & Busotti, F. Widespread crown defoliation after a drought and heat wave in the forests of Tuscany (central Italy) and their recovery—a case study from summer 2017. Front. For. Glob. Change 2, 74 (2019).

    Article 

    Google Scholar
     

  • Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article 

    Google Scholar
     

  • Roberts, M. R. Response of the herbaceous layer to natural disturbance in North American forests. Can. J. Bot. 82, 1273–1283 (2004).

    Article 

    Google Scholar
     

  • Sayer, E. J., Heard, M. S., Grant, H. K., Marthews, T. R. & Tanner, E. V. J. Soil carbon release enhanced by increased tropical forest litterfall. Nat. Clim. Change 1, 304–307 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Nilsson, M. C. & Wardle, D. A. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 3, 421–428 (2005).

    Article 

    Google Scholar
     

  • Landuyt, D. et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Change Biol. 25, 3625–3641 (2019).

    Article 

    Google Scholar
     

  • Lendzion, J. & Leuschner, C. Temperate forest herbs are adapted to high air humidity—evidence from climate chamber and humidity manipulation experiments in the field. Can. J. For. Res. 39, 2332–2342 (2009).

    Article 

    Google Scholar
     

  • Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zellweger, F. et al. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob. Ecol. Biogeogr. 28, 1774–1786 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Frenne, P. et al. Light accelerates plant responses to warming. Nat. Plants 1, 15110 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Dietz, L. et al. Windstorm‐induced canopy openings accelerate temperate forest adaptation to global warming. Glob. Ecol. Biogeogr. 29, 2067–2077 (2020).

    Article 

    Google Scholar
     

  • Hylander, K., Greiser, C., Christiansen, D. M. & Koelemeijer, I. A. Climate adaptation of biodiversity conservation in managed forest landscapes. Conserv. Biol. 36, e13847 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, J. W. & Jackson, S. T. Novel climates, no‐analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article 

    Google Scholar
     

  • Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).

    Article 

    Google Scholar
     

  • Batllori, E. et al. Forest and woodland replacement patterns following drought-related mortality. Proc. Natl Acad. Sci. USA 117, 29720–29729 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fung Au, T. et al. Younger trees in the upper canopy are more sensitive but also more resilient to drought. Nat. Clim. Change 12, 1168–1174 (2022).

    Article 

    Google Scholar
     

  • Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gentilesca, T., Camarero, J. J., Colangelo, M., Nolè, A. & Ripullone, F. Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest 10, 796–806 (2016).

    Article 

    Google Scholar
     

  • Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic Appl. Ecol. 45, 86–103 (2020).

    Article 

    Google Scholar
     

  • Bachofen, C. et al. Stand structure of central European forests matters more than climate for transpiration sensitivity to VPD. J. Appl. Ecol. 60, 886–897 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Segar, J. et al. Divergent roles of herbivory in eutrophying forests. Nat. Commun. 13, 7837 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blondeel, H. et al. The need for an understory decision support system for temperate deciduous forest management. For. Ecol. Manage. 480, 118634 (2021).

    Article 

    Google Scholar
     

  • Findlater, K., Kozak, R. & Hagerman, S. Difficult climate-adaptive decisions in forests as complex social–ecological systems. Proc. Natl Acad. Sci. USA 119, e2108326119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thom, D. et al. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J. Appl. Ecol. 54, 28–38 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Koelemeijer, I. A. et al. Interactive effects of drought and edge exposure on old-growth forest understory species. Landsc. Ecol. 37, 1839–1853 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qie, L. et al. Drought cuts back regeneration in logged tropical forests. Environ. Res. Lett. 14, 045012 (2019).

    Article 

    Google Scholar
     

  • Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83 (2017).

    Article 

    Google Scholar
     

  • Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).

    Article 

    Google Scholar
     

  • Archaux, F. & Wolters, V. Impact of summer drought on forest biodiversity: what do we know? Ann. For. Sci. 63, 645–652 (2006).

    Article 

    Google Scholar
     

  • Hoover, D. L., Wilcox, K. R. & Young, K. E. Experimental droughts with rainout shelters: a methodological review. Ecosphere 9, e02088 (2018).

    Article 

    Google Scholar
     

  • Bugmann, H. & Seidl, R. The evolution, complexity and diversity of models of long-term forest dynamics. J. Ecol. 110, 2288–2307 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rammer, W. & Seidl, R. A scalable model of vegetation transitions using deep neural networks. Methods Ecol. Evol. 10, 879–890 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanczuk, P. et al. Microclimate and forest density drive plant population dynamics under climate change. Nat. Clim. Change 13, 840–847 (2023).

    Article 

    Google Scholar
     

  • Calders, K. et al. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sens. Environ. 251, 112102 (2020).

    Article 

    Google Scholar
     

  • Webster, C., Essery, R., Mazzotti, G. & Jones, T. Using just a canopy height model to obtain lidar-level accuracy in 3D forest canopy shortwave transmissivity estimates. Agric. For. Meteorol. 338, 109429 (2023).

    Article 

    Google Scholar
     

  • EU Forest Strategy to 2030, https://environment.ec.europa.eu/strategy/forest-strategy_en (European Commission, accessed 9 June 2023).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *