Lowman, M. D. & Wittman, P. K. Forest canopies: methods, hypotheses, and future directions. Annu. Rev. Ecol. Syst. 27, 55–81 (1996).
Gilliam, F. (ed.) The Herbaceous Layer in Forests of Eastern North America (Oxford Univ. Press, 2014).
De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).
Senior, R. A., Hill, J. K., Benedick, S. & Edwards, D. P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Change Biol. 24, 1267–1278 (2018).
Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).
Verheyen, K. et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J. Ecol. 100, 352–365 (2012).
Boyle, M. J. W. et al. Localised climate change defines ant communities in human-modified tropical landscapes. Funct. Ecol. 35, 1094–1108 (2021).
De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).
De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
Senf, C. & Seidl, R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18, 5223–5230 (2021).
Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).
State of Europe’s Forests 2020, https://foresteurope.org/state-europes-forests-2020/ (Forest Europe, 2020).
Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).
Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).
Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022).
Patacca, M. et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Change Biol. 29, 1359–1376 (2023).
Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).
Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196 (2021).
Vicente-Serrano, S. M. et al. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).
Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).
Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).
Nagel, T. A. et al. The natural disturbance regime in forests of the Dinaric Mountains: a synthesis of evidence. For. Ecol. Manage. 388, 29–42 (2017).
Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Change Biol. 24, 4304–4315 (2018).
Pollastrini, M., Puletti, N., Selvi, F., Iacopetti, G. & Busotti, F. Widespread crown defoliation after a drought and heat wave in the forests of Tuscany (central Italy) and their recovery—a case study from summer 2017. Front. For. Glob. Change 2, 74 (2019).
Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).
Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
Roberts, M. R. Response of the herbaceous layer to natural disturbance in North American forests. Can. J. Bot. 82, 1273–1283 (2004).
Sayer, E. J., Heard, M. S., Grant, H. K., Marthews, T. R. & Tanner, E. V. J. Soil carbon release enhanced by increased tropical forest litterfall. Nat. Clim. Change 1, 304–307 (2011).
Nilsson, M. C. & Wardle, D. A. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 3, 421–428 (2005).
Landuyt, D. et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Change Biol. 25, 3625–3641 (2019).
Lendzion, J. & Leuschner, C. Temperate forest herbs are adapted to high air humidity—evidence from climate chamber and humidity manipulation experiments in the field. Can. J. For. Res. 39, 2332–2342 (2009).
Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).
Zellweger, F. et al. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob. Ecol. Biogeogr. 28, 1774–1786 (2019).
De Frenne, P. et al. Light accelerates plant responses to warming. Nat. Plants 1, 15110 (2015).
Dietz, L. et al. Windstorm‐induced canopy openings accelerate temperate forest adaptation to global warming. Glob. Ecol. Biogeogr. 29, 2067–2077 (2020).
Hylander, K., Greiser, C., Christiansen, D. M. & Koelemeijer, I. A. Climate adaptation of biodiversity conservation in managed forest landscapes. Conserv. Biol. 36, e13847 (2022).
Williams, J. W. & Jackson, S. T. Novel climates, no‐analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).
Batllori, E. et al. Forest and woodland replacement patterns following drought-related mortality. Proc. Natl Acad. Sci. USA 117, 29720–29729 (2020).
Fung Au, T. et al. Younger trees in the upper canopy are more sensitive but also more resilient to drought. Nat. Clim. Change 12, 1168–1174 (2022).
Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).
Gentilesca, T., Camarero, J. J., Colangelo, M., Nolè, A. & Ripullone, F. Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest 10, 796–806 (2016).
Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
Bachofen, C. et al. Stand structure of central European forests matters more than climate for transpiration sensitivity to VPD. J. Appl. Ecol. 60, 886–897 (2023).
Segar, J. et al. Divergent roles of herbivory in eutrophying forests. Nat. Commun. 13, 7837 (2022).
Blondeel, H. et al. The need for an understory decision support system for temperate deciduous forest management. For. Ecol. Manage. 480, 118634 (2021).
Findlater, K., Kozak, R. & Hagerman, S. Difficult climate-adaptive decisions in forests as complex social–ecological systems. Proc. Natl Acad. Sci. USA 119, e2108326119 (2022).
Thom, D. et al. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J. Appl. Ecol. 54, 28–38 (2017).
Koelemeijer, I. A. et al. Interactive effects of drought and edge exposure on old-growth forest understory species. Landsc. Ecol. 37, 1839–1853 (2022).
Qie, L. et al. Drought cuts back regeneration in logged tropical forests. Environ. Res. Lett. 14, 045012 (2019).
Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83 (2017).
Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).
Archaux, F. & Wolters, V. Impact of summer drought on forest biodiversity: what do we know? Ann. For. Sci. 63, 645–652 (2006).
Hoover, D. L., Wilcox, K. R. & Young, K. E. Experimental droughts with rainout shelters: a methodological review. Ecosphere 9, e02088 (2018).
Bugmann, H. & Seidl, R. The evolution, complexity and diversity of models of long-term forest dynamics. J. Ecol. 110, 2288–2307 (2022).
Rammer, W. & Seidl, R. A scalable model of vegetation transitions using deep neural networks. Methods Ecol. Evol. 10, 879–890 (2019).
Sanczuk, P. et al. Microclimate and forest density drive plant population dynamics under climate change. Nat. Clim. Change 13, 840–847 (2023).
Calders, K. et al. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sens. Environ. 251, 112102 (2020).
Webster, C., Essery, R., Mazzotti, G. & Jones, T. Using just a canopy height model to obtain lidar-level accuracy in 3D forest canopy shortwave transmissivity estimates. Agric. For. Meteorol. 338, 109429 (2023).
EU Forest Strategy to 2030, https://environment.ec.europa.eu/strategy/forest-strategy_en (European Commission, accessed 9 June 2023).