Gallery Review Europe Blog European Artists Two-sample mendelian randomization analysis investigates ambient fine particulate matter’s impact on cardiovascular disease development
European Artists

Two-sample mendelian randomization analysis investigates ambient fine particulate matter’s impact on cardiovascular disease development


  • Holgate, S. Air pollution is a public health emergency. BMJ 378, o1664 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, M. R. The cardiovascular effects of air pollution: Prevention and reversal by pharmacological agents. Pharmacol. Ther. 232, 107996 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinault, L. et al. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ. Health 15, 18 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pappin, A. J. et al. Examining the shape of the association between low levels of fine particulate matter and mortality across three cycles of the Canadian census health and environment cohort. Environ. Health Perspect. 127, 107008 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajagopalan, S. et al. Personal-level protective actions against particulate matter air pollution exposure: A scientific statement from the American Heart Association. Circulation 142, e411–e431 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yin, H. et al. Population ageing and deaths attributable to ambient PM2·5 pollution: A global analysis of economic cost. Lancet Planet Health 5, e356–e367 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wolf, K. et al. Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: A pooled analysis of six European cohorts within the ELAPSE project. Lancet Planet Health 5, e620–e632 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Konduracka, E. & Rostoff, P. Links between chronic exposure to outdoor air pollution and cardiovascular diseases: A review. Environ. Chem. Lett. 20, 2971–2988 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajagopalan, S., Al-Kindi, S. G. & Brook, R. D. Air pollution and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2054–2070 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Combes, A. & Franchineau, G. Fine particle environmental pollution and cardiovascular diseases. Metabolism 100S, 153944 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Martinelli, N., Olivieri, O. & Girelli, D. Air particulate matter and cardiovascular disease: A narrative review. Eur. J. Intern Med. 24, 295–302 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 115, 9592–9597 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

  • Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: The STROBE-MR statement. JAMA 326, 1614–1621 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Reciprocal causation mixture model for robust Mendelian randomization analysis using genome-scale summary data. Nat. Commun. 14, 1131 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, G. D. et al. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med. 4, e352 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pope, C. A. 3rd. et al. Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. Circ. Res. 116, 108–115 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yusuf, S. et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 395, 795–808 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lelieveld, J. et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 40, 1590–1596 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, B. et al. The impact of long-term PM2.5 exposure on specific causes of death: Exposure-response curves and effect modification among 53 million U.S. Medicare beneficiaries. Environ. Health 19, 20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadley, M. B., Baumgartner, J. & Vedanthan, R. Developing a clinical approach to air pollution and cardiovascular health. Circulation 137, 725–742 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samoli, E. et al. Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA study. Environ. Health Perspect. 116, 1480–1486 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pope, C. A. 3rd. et al. Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation 109, 71–77 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Greenland, P. & Lloyd-Jones, D. M. Role of coronary artery calcium testing for risk assessment in primary prevention of atherosclerotic cardiovascular disease: A review. JAMA Cardiol. 7, 219–224 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Joshi, P. H. & de Lemos, J. A. Diagnosis and management of stable angina: A review. JAMA 325, 1765–1778 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, F. F., Vaitenas, I., Malaisrie, S. C. & Maganti, K. Mechanical complications of acute myocardial infarction: A review. JAMA Cardiol. 6, 341–349 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kaufman, J. D. et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet 388, 696–704 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jinnouchi, H. et al. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Atherosclerosis 306, 85–95 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beelen, R. et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 383, 785–795 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nawrot, T. S., Perez, L., Künzli, N., Munters, E. & Nemery, B. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet 377, 732–740 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Madrigano, J. et al. Long-term exposure to PM2.5 and incidence of acute myocardial infarction. Environ. Health Perspect. 121, 192–196 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Héritier, H. et al. A systematic analysis of mutual effects of transportation noise and air pollution exposure on myocardial infarction mortality: A nationwide cohort study in Switzerland. Eur Heart J 40, 598–603 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. Hourly exposure to ultrafine particle metrics and the onset of myocardial infarction in Augsburg, Germany. Environ. Health Perspect. 128, 17003 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mustafic, H. et al. Main air pollutants and myocardial infarction: A systematic review and meta-analysis. JAMA 307, 713–721 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lakey, P. S. et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci. Rep. 6, 32916 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Q., Liu, H., Zhang, J. & Chen, D. The effect of ambient particle matters on hospital admissions for cardiac arrhythmia: A multi-city case-crossover study in China. Environ. Health 17, 60 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monrad, M. et al. Long-term exposure to traffic-related air pollution and risk of incident atrial fibrillation: A cohort study. Environ. Health Perspect. 125, 422–427 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yue, C., Yang, F., Li, F. & Chen, Y. Association between air pollutants and atrial fibrillation in general population: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 208, 111508 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stockfelt, L. et al. Long-term effects of total and source-specific particulate air pollution on incident cardiovascular disease in Gothenburg, Sweden. Environ. Res. 158, 61–71 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, X. et al. Short-term exposure to air pollution and cardiac arrhythmia: A meta-analysis and systematic review. Int. J. Environ. Res. Public Health 13, 1 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. Y. et al. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 235, 576–588 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campen, M. J., Lund, A. & Rosenfeld, M. Mechanisms linking traffic-related air pollution and atherosclerosis. Curr. Opin. Pulm. Med. 18, 155–160 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giorgini, P. et al. Air pollution exposure and blood pressure: An updated review of the literature. Curr. Pharm. Des. 22, 28–51 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, M. et al. Associations between ambient air pollutants and blood pressure among children and adolescents: A systemic review and meta-analysis. Sci. Total Environ. 785, 147279 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, B., Perel, P., Mensah, G. A. & Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 18, 785–802 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carey, R. M., Moran, A. E. & Whelton, P. K. Treatment of hypertension: A review. JAMA 328, 1849–1861 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Eliot, M. N. & Wellenius, G. A. Short-term changes in ambient particulate matter and risk of stroke: A systematic review and meta-analysis. J. Am. Heart Assoc. 3, 1 (2014).

    Article 

    Google Scholar
     

  • Lee, P. N., Thornton, A. J., Forey, B. A. & Hamling, J. S. Environmental tobacco smoke exposure and risk of stroke in never smokers: An updated review with meta-analysis. J. Stroke Cerebrovasc. Dis. 26, 204–216 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wellenius, G. A. et al. Ambient fine particulate matter alters cerebral hemodynamics in the elderly. Stroke 44, 1532–1536 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curtin, F. & Schulz, P. Multiple correlations and Bonferroni’s correction. Biol. Psychiatry 44, 775–777 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keselman, H. J., Cribbie, R. & Holland, B. Controlling the rate of Type I error over a large set of statistical tests. Br. J. Math. Stat. Psychol. 55, 27–39 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mascha, E. J. & Vetter, T. R. Significance, errors, power, and sample size: The blocking and tackling of statistics. Anesth. Analg. 126, 691–698 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gelbard, R. B. & Cripps, M. W. Pitfalls in study interpretation. Surg. Infect. (Larchmt) 22, 646–650 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Domb, B. G. & Sabetian, P. W. The blight of the Type II error: When no difference does not mean no difference. Arthroscopy 37, 1353–1356 (2021).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Exit mobile version